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LETTER TO THE EDITOR 

AC conductivity and diffusion near the percolation 
threshold 
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Received 14 June 1994. in find form 29 July 1994 

Abstract. The dynamic conductivity due to charged pmlicles p f o m i n g  a random walk in a 
percolating network nem threshold is considered. I1 is pointed out that an approach in which 
lhe Miller-Abraham equivalent network is used yields the same ~ I I S  as thal based on the 
generalized Einstein relation. A mcent equivalent network analysis of Coniglio er 01 is shown 
to be in Mor,  because an inadequate equivalent network has been utilized. 

The study of the dynamic conductivity in self-similar structures, in particular, percolation 
models near threshold, has been the subject of many inverstigations in the last few years 
[l,  21. This matter is of equal importance for theoretical and applied research 131. 

Let us recall that there are two realizations of a system exhibiting a non-trivial AC 
conductivity in connection with a percolation transition: (i) a network composed of resistors 
and capacitors, (ii) a percolating lattice in which charged particles perfom a random walk. 
At the percolation threshold the dynamic conductivity exhibits, in both cases, a frequency 
dependence which can be characterized by a power law 

u(o) K (iw)". (1) 
In case (i) one has U = t / ( t  + s), where t is the exponent due to which the DC conductivity 
vanishes above threshold, and s causes the dielectric constant to diverge below threshold 

In contrast to the first case there is a controversy in the literature concerning the scaling 
behaviour of system (ii). Using the Einstein relation between the diffusive and conductive 
behaviour of charged random walkers, and averaging over the conhibutions of carriers 
situated in different clusters, Gefen et al [5] (referred to as GAA) showed that in this 
case the exponent U is given by U = t / ( t  + 2v - p). where v and j3 are the exponents 
corresponding to the correlation length and the order parameter, respectively. In a more 
recent paper, Coniglio et al [61 (referred to as CDH) find, instead, U = ( t  + u ) / ( t  + 2 u  - p )  
using an equivalent network approach. In the following we show that the analysis of CDH 
is incorrect. The standard equivalent network [&IO] which describes the conductivity of 
diffusing particles contains terms ignored by these authors. If the correct network is used, 
the results of GAA are recovered. 

The fundamental equation of motion for non-interacting classical carriers performing a 
random walk in an ordered or disordered lattice is 

[2, 41. 
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where ni is the probability to find a carrier at site i and W,, the hopping probability per 
unit time. 

Now, there are two ways to calculate the dynamic conductivity produced by the random 
walk of such carriers with charge e. The first is by applying the fluctuation-dissipation 
theorem which takes the form of a generalized Einstein relation [ I  I]: 

where n is the number of carriers per volume and &U) is the Laplace transform (with 
frequency parameter p = io + 0) of the velocity autocorrelation function. This function is 
often called frequency-dependent diffusivity, because its DC value is the diffusion coefficient. 
Relation (3) holds as long as linear'response theory is valid, i.e. as long as the external 
electric field is small enough to be treated using a linear approximation. B(w)  is related to 
another quantity of interest, namely the mean-square distance walked by a particle during 
time r ,  (r2(s)), through its Laplace transform (r2(o)) by [ 121 

b(o) = $(io)'(r'(w)). (4) 

( rZ( r ) )  G sa (5) 

In fractals, including percolating systems at threshold, one has anomalous diffusion 
[I ,  13. 141 

with a! < 1. This exponent is related to the random-walk dimension dw which obeys the 
scaling relations I141 

where d is the fractal dimension of the infinite cluster and d its spectral (or fracton) 
dimension [14]. The second relation holds for any fractal. 

Equation (5) gives the mean-square distance walked by a single particle which started 
at time r = 0 on the infinite cluster. By averaging over random walks on finite clusters 
of different size and on the infinite cluster GAA obtained for the averaged mean-square 
distance 

(r2(r)), 0: P (7 ) 
with 6 = (2 - p/u) /&.  Combining (1). (3). (4), (7), and using the Tauberian theorem for 
the Laplace transform of power laws one readily obtains the AC conductivity exponent as 

U = 1 -6 = t / ( t  +2u - B ) .  (8) 
For (bond or site) concentrations p larger than their critical value pc implying a finite DC 
conductivity o(0) a ( p  - pc)' and a finite correlation length f 0: ( p  - pJ" there is a 
crossover to normal diffusion at a time so 6". 

The second way to calculate the dynamic conductivity of model (ii) is to construct 
an equivalent network which has the same electrodynamic behaviour as the random-walk 
system. This method has been introduced by Miller and Abraham (71 and utilized further 
in various publications and textbooks [&I 11.  It can be obtained by expanding ni and Wii 
around their equilibrium values, n;" and W:?) to linear order in the applied external field 
E t )  The equilibrium values of the ni can represented in terms of local energies ci as 
nfi = exp(-ci}/xiexp{-c;) [15], and one has the fundamental detailed-balance relation 

(9) Wjj = Wjiexp((ci - c j  -e[& - Ujl)/ksT) 
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Figure 1. (a )  Miller-Abrahams equivalent network Figure 2. (a)  One-dimensional version of an ordered 
corresponding to (10). (6) CDM network. where the CDM oetwork. (b) One-dimensional version of 
s o w e s  U; are missing. an ordered Miller-Abraham network. (c) Miller- 

Abraham Network with sources replaced by a 
polentiometer array. 

where Ut = E - T $ .  Representing the nj as ni = njo)exppj/ksT and defining local 
elecmchemical potentials as V, = pj/e - Uj, effective capacitances as Cj = e2ny’ /kBT 
and effective conductances as g,j = e z n ~ ) W ~ ) / k B T  one arrives, to linear order in the V, 
and Ui at 

d 
C,-(Vi +U,) = c g i j ( v j  - Vi)  

j 
dt 

This set of equations [7-111 can be interpreted as Kirchhoff‘s equations for a network 
composed of conductances gij. where at each vertex there is a local AC voltage source Ui, 
coupled capacitatively via the Cj. This network is depicted in figure l(a). 

To proceed further one can rederive the generalized Einstein relation (3) using the 
Miller-Abrahams network, as done, for example, in [ IO ,  111. Alternatively, one can consider 
directly the scaling properties of the specific admittance of the equivalent network. 

The approach of CDH is an attempt at this second possibility. However, in the equivalent 
network they considered the ‘generators’ Uj are missing. As can be verified from the above 
analysis (see, for example, [ 1 I]) these terms arise from the fact that in systems with mobile 
charges the driving forces for local currents are local voltage drops and local chemical 
potential gradients. Ignoring them amounts to either violating particle conservation or the 
detailed-balance relation (9). 

Ignoring the Ui terms CDH dealt with a hypothetical network in which each node is 
grounded capacitatively (see figure I@)). As demonstrated by these authors the impedance 
of their hypothetical network exhibits an unusual length dependence. The impedance of an 
ordered linear infinite chain of this type (figure Z(a)) becomes independent of the number of 



L730 Lefter to the Editor 

beads if the number becomes large. Therefore a three-dimensional capacitatively grounded 
network (figure I(b)) has, at finite frequencies, a conductivity which is proportional to 
the linear dimension of the sample. From this strange scaling behaviour (which is never 
observed in the AC conductivity of real materials) they find their scaling relation for U 
quoted above. 

A regular chain of the Miller-Abraham type (i.e. gij = g, C; = C, see figure 2(b)) 
can be converted by a potentiometer array with beads y;j = y to the chain depicted in 
figure 2(c). This chain obviously has an impedance which increases linearly with its length. 
Therefore the conductivity of a three-dimensional (and two-dimensional) ordered version 
of the Miller-Abrahams equivalent circuit has a well behaved length-independent dynamic 
conductivity. This behaviour holds also for a percolating lattice at finite frequency, because 
in this case one can convert the equivalent network with percolating conductances as in 
figure 2(c) into an effective lattice network in which all connecting admittances are finite. 
The specific admittance of this network does not depend on the linear dimension of the 
sample. 

Keeping these findings in mind we now perform a scaling analysis of the percolating 
network. For our purposes it  is sufficient to consider only the case p > pc .  Near the per- 
colation threshold pc the conductivity is expected to exhibit scaling behaviour according to 

The length-frequency scaling exponent 4 for a fractal with dynamics governed by equations 
of motion (2) or (10) is given by [13,14,16] 4 = a/2 = l/dw = J / ~ .  For 
x = 0'5 << 1 the static behaviour U cx 5-f/y must be recovered, so that in this limit 
f ( x )  = f ( 0 )  = constant. According to the above argument, for high frequency x >> I ,  the 
conductivity should be independent of the characteristic length scale 5 so that in this limit 
we must have f ( x )  cx x'l".  From (6) this yields an AC conductivity of the form ( I )  with 
U = & / v  = t/(t + 2v - 0). The DC-Ac crossover frequency o, defined by o$f - I is, 
as expected, equal to the inverse of the characteristic time so cx E d ~  which determines the 
crossover from anomalous to normal diffusion. 

The present argumentation is in accord with a remark of CDH in which they state that, if 
the AC conductivity is length-independent, their scaling analysis yields the results of GAA. 

Let us now consider the numerical values of U predicted by the GAA relation (8). 
In [I41 results of various types of calculations of critical exponents for the percolation 
problem have been compiled. In two dimensions B and U are known exactly: ,5 = 4, 
U = 4. Numerical calculations of t t  vary between 1.26 and 1.31 with error bars of 0.5% 
to 1%. This yields a value of U = 0.336 F0.004. In a similar way we obtain in three 
dimensions U = 0.61 & 0.03. Using the CDH relation U = (t + u ) / ( t  + 2u - p)  instead, 
one would obtain U x 0.7 in d = 2 and U % 0.9 in d = 3. 

Finally I would like to add a word of caution concerning the comparison of percolation 
exponents with Ac conductivity data in composite materials. First of all, most disordered 
and composite materials exhibit a frequency dependence of type ( I )  not as a consequence 
of fractal scaling but of the presence of disorder [I71 or correlation effects [IS, 191. 
If such materials (for example porous Si [3]) exhibit fractal properties, which can be 
proved by small-angle x-ray 120, 211 or neutron [22] scattering, this does not mean that a 
percolating lattice is an adequate model for such a material. For example, in the material 
under consideration 'finite clusters' might be absent so that the exponent U becomes [3] 
U = I -a = I - 2/d,  = I - d / d .  In such a case U can be predicted if d is known from 
small angle scattering data and 2 from the specific heat or the phonon density of state. 

t The conductivity exponent is called fi in IS. 141. 

u(o) = u&-""f[(io)':]. (11) 

- -  



Letter to the Editor L731 

I am grateful to the authors of [I41 for sending me their review article prior to publication. 
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