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LETTER TO THE EDITOR

Ac conductivity and diffusion near the percolation
threshold

Walter Schirmacher
Physik-Department E13, Technische Universitit Miinchen, D-85748 Garching, Germany

Received 14 June 1994, in final form 29 July 1994

Abstract. The dynamic conductivity due to charged particles performing a random walk in a
percolating network near threshold is considered. It is pointed out that an approach in which
the Miller-Abrahams equivalent network is used vields the same results as that based on the
generalized Einstein relation. A recent equivalent network analysis of Coniglio er af is shown
to be in error, because an inadequate equivalent network has been utilized.

The study of the dynamic conductivity in self-similar structures, in particular, percolation
models near threshold, has been the subject of many inverstigations in the last few years
[1, 2]. This matter is of equal importance for theoretical and applied research [3].

Let us recall that there are two realizations of a system exhibiting a non-trivial AC
conductivity in connection with a percolation transition: (i) a network composed of resistors
and capacitors, (ii) a percolating lattice in which charged particles perform a random walk,
At the percolation threshold the dynamic conductivity exhibits, in both cases, a frequency
dependence which can be characterized by a power law

olw) o {iw)*. (1

In case (i) one has u# = ¢/(¢ +5), where ¢ is the exponent due to which the DC conductivity
vanishes above threshold, and s causes the dielectric constant to diverge below threshold
[2, 4.

In contrast to the first case there is a controversy in the literature concerning the scaling
behaviour of system (ii). Using the Einstein relation between the diffusive and conductive
behaviour of charged random walkers, and averaging over the contributions of carriers
situated in different clusters, Gefen et al [5) (referred to as GAA) showed that in this
case the exponent u is given by u = t/(z + 2v — B), where v and § are the exponents
corresponding to the correlation length and the order parameter, respectively. In a more
recent paper, Coniglio et al [6] (referred to as CDH) find, instead, u = (¢ +v)/(t +2v — 8)
using an equivalent network approach. In the following we show that the analysis of CDH
is incorrect. The standard equivalent network [6-10] which describes the conductivity of
diffusing particles containg terms ignored by these authors. If the correct network is used,
the resulis of GAA are recovered.

The fundamental equation of motion for non-interacting classical carriers performing a
random walk in an ordered or disordered lattice is

d
d—n,- = - E W,‘j’l,‘ + E Wj,‘ﬂj (2)
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where #n; is the probability to find a carrier at site i and W;; the hopping probability per
unit time.

Now, there are two ways to calculate the dynamic conductivity produced by the random
walk of such carriers with charge e. The first is by applying the fluctuation-dissipation
theorem which takes the form of a generalized Einstein relation [11]:

N Y-
o(w) = kBTne D(w) (3)

where n is the number of carriers per volume and D(w) is the Laplace transform {with
frequency parameter p = iew - 0} of the velocity antocorrelation function. This function is
often called frequency-dependent diffusivity, because its DC value is the diffusion coefficient.
Relation (3) holds as long as linear response theory is valid, i.e. as long as the external
electric field is small enough to be treated using a linear approximation. D(w) is related to
another quantity of interest, namely the mean-square distance walked by a particle during
time 7, {r2(t)), through its Laplace transform {r*(w)} by [12]

Diw) = {(i)?r’ @) . @

In fractals, including percolating systems at threshold, one has anomalous diffusion
[1, 13, 14]

{(ri(m)) = 1° (5)

with & < 1. This exponent is related to the random-walk dimension d,, which obeys the
scaling relations {14]

t—p

v

Q.ll E::

dy =

Rlw

(6)

where d is the fractal dimension of the infinite cluster and & its spectral (or fracton)
dimension {14}. The second relation holds for any fractal.

Equation (5) gives the mean-square distance walked by a single particle which started
at time 7 = 0 on the infinite cluster. By averaging over random walks on finite clusters
of different size and on the infinite cluster GAA obtained for the averaged mean-square
distance

(r¥(t)ay o T¥ 7

with & = (2 — 8/v)/dy. Combining (1), (3), (4), (7), and using the Tauberian theorem for
the Laplace transform of power laws one readily obtains the AC conductivity exponent as

w=1—G=1t/(t+2v—p). (8)

For (bond or site) concentrations p larger than their critical value p, implying a finite DC
conductivity o(0) o« (p — pc) and a finite correlation length & o (p — po)™" there is a
crossover to normal diffusion at a time g oc £%,

The second way to calculate the dynamic conductivity of model (ii} is to construct
an equivalent network which has the same electrodynamic behaviour as the random-walk
system. This method has been introduced by Miller and Abrahams [7] and utilized further
in various publications and textbooks [8-11]. It can be obtained by expanding n; and Wy
around their eguilibrium values, nf-m and W}p), to linear order in the applied external field
Egt). The equilibrium values of the n; can 'l’:e represented in terms of local energies ¢; as
nfo =exp{—¢}/ Y, exp{—e} [15], and one has the fundamental detailed-balance relation

Wi = Wy expl(ei — € —e[U; — U;1)/ ks T} 9
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Figore 1. (2) Miller-Abrahams equivalent network  Figure 2. (a) One-dimensional version of an ordered

corresponding to (10). (6) CDM network, where the CDM petwork, (#y One-dimensional version of

sources U; are missing. an ordered Miller-Abrahams network. {c) Miller-
Abrahams Network with sources replaced by a
patentiometer array.

where U; = E-r,. Representing the n; as n; = n}m expp;/kpT and defining local
electrochemical potentials as V; = p;/e — Uj; effective capacitances as C; = e2n§°’ [kgT
and effective conductances as g,;; = eznfm WSD /kgT one arrives, to linear order in the V;
and U; at

d
6;5;(14+Uf)=12.g,-,-(w—m. (10)

This set of equations [7-11] can be interpreted as Kirchhoff’s equations for a network
composed of conductances g;;, where at each vertex there is a local AC voltage source U;,
coupled capacitatively via the C;. This network is depicted in figure 1{a).

To proceed further one can rederive the generalized Einstein relation (3) using the
Miller—Abrahams network, as done, for example, in {10, 11]. Alternatively, one can consider
directly the scaling properties of the specific admittance of the equivalent network.

The approach of CDH is an atternpt at this second possibility. However, in the equivalent
network they considered the ‘generators’ U; are missing. As can be verified from the above
analysis (see, for example, [11]) these terms arise from the fact that in systems with mobile
charges the driving forces for local currents are local voltage drops and local chemical
potential gradients. Ignoring them amounts to either violating particie conservation or the
detailed-balance relation (9).

Ignoring the U; terms CDH dealt with a hypothetical network in which each node is
grounded capacitatively (see figure 1(&)). As demonstrated by these authors the impedance
of their hypothetical network exhibits an unusual length dependence. The impedance of an
ordered linear infinite chain of this type (figure 2{(a)) becomes independent of the number of
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beads if the number becomes large. Therefore a three-dimensional capacitatively grounded
netwark (figure 1(£)) has, at finite frequencies, 2 conductivity which is proportional to
the linear dimension of the sample. From this strange scaling behaviour (which is never
observed in the AC conductivity of real materials) they find their scaling relation for u
quoted above.

A regular chain of the Miller-Abrahams type (ie. g; = g. C; = C, see figure 2(b))
can be converted by a potentiometer array with beads y;; = y to the chain depicted in
figure 2(c). This chain obvicusly has an impedance which increases linearly with its length,
Therefore the conductivity of a three-dimensional (and two-dimensional) ordered version
of the Miller—Abrahams equivalent circuit has a well behaved length-independent dynamic
conductivity. This behaviour holds also for a percolating lattice at finite frequency, because
in this case one can convert the equivalent network with percolating conductances as in
figure 2{c) into an effective lattice network in which all connecting admittances are finite.
The specific admittance of this network does not depend on the linear dimension of the
sample,

Keeping these findings in mind we now perform a scaling analysis of the percolating
network. For our purposes it is sufficient to consider only the case p > p.. Near the per-
colation threshold p. the conductivity is expected 1o exhibit scaling behaviour according to

o (@) = oot~ f1(iw)*E]. (1)
The length—frequency scaling exponent ¢ for a fractal with dynamics governed by equations
of motion (2) or (10) is given by [13,14,16] ¢ = «/2 = 1/d, = d/2d. For
x = wPf <« 1 the static behaviour 0 o £~*/* must be recovered, so that in this limit
F(x) == F{0) = constant. According to the above argument, for high frequency x 3> 1, the
conductivity should be independent of the characteristic length scale & so that in this limit
we must have f(x) « x'/*. From (6) this yields an AC conductivity of the form (1) with
u = gt/v = t/{t +2v ~ 8). The DC-AC crossover frequency w. defined by wf £ ~1is,
as expected, equal to the inverse of the characteristic time 7o £% which determines the
crossover from anomalous to normal diffusion.

The present argumentation is in accord with a remark of CDH in which they state that, if
the AC conductivity is length-independent, their scaling analysis yields the results of GAA.

Let us now consider the numerical values of u predicted by the GAA relation (8).
In [14] results of various types of calculations of critical exponents for the percolation
problem have been compiled. In two dimensions g and v are known exactly: f = 35—6,
v = %. Numerical calculations of 7§ vary between 1.26 and 1.31 with error bars of 0.5%
to 1%. This yields a value of u = 0.336 £ 0.004. In a similar way we obtain in three
dimensions ¢ = 0.6]1 £ 0,03, Using the CDYH relation u = (¢ + v)/ (¢ + 2v — B) instead,
one would obtain 4 0.7 ind=2and u 209 ind = 3.

Finally I would like to add a word of caution concerning the comparison of percolation
exponents with AC conductivity data in composite materials. First of all, most disordered
and composite materials exhibit a frequency dependence of type (1) not as a consequence
of fractal scaling but of the presence of disorder [17] or correlation effects [18, 19].
If such materials (for example porous Si [3]) exhibit fractal properties, which can be
proved by small-angle x-ray [20, 21] or neutron [22} scattering, this does not mean that a
percolating lattice is an adeguate model for such a material. For example, in the matenal
under consideration “finite clusters’ might be absent so that the exponent u becomes [3]
u=1-a=1-2/d, =1~ d}d. Insuch a case u can be predicted if 4 is known from
small angle scattering data and d from the specific heat or the phonon density of state.

t The conductivity exponent is called u in {5, 14].



Letter to the Editor L731

I am grateful to the authors of [14] for sending me their review article prior to publication.
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